
NumberParser (Java)

Last release -- Test program

Main page (versión en español)

Introduction

The NumberParser package provides a common framework to deal with all the Java

numeric types. It relies on the following four classes (NumberX):

• Number only supports the double type.

• NumberD can support any numeric type via Object.

• NumberO can support different numeric types simultaneously.

• NumberP can parse numbers from strings.

//1.23 (double).
Number number = new Number(1.23);

//123 (int).
NumberD numberD = new NumberD(123);

//1.23 (double). Others: 1 (int) and '�' (char).
NumberO numberO = new NumberO
(
 1.23, new ArrayList()
 {{
 add(NumericTypes.Integer);
 add(NumericTypes.Character);
 }}
);

//1 (long).
NumberP numberP = new NumberP
(
 "1.23", new ParseConfig(NumericTypes.Long)
);

Common Features

All the NumberX classes have various characteristics in common.

• Defined according to the fields getValue() (double or Object)

and getBaseTenExponent() (int). All of them support ranges beyond [-1, 1] *

10^2147483647.

• Static (NumberD.Addition(numberD1, numberD2)) and non-static

(numberD1.greaterThan(numberD2)) support for the main arithmetic and

comparison operations.

• Errors managed internally and no exceptions thrown.

https://github.com/varocarbas/FlexibleParser_Java/releases/tag/NumberParser_1.0.8.5
https://github.com/varocarbas/FlexibleParser_Java/blob/master/all_code/Test/src/Parts/NumberParser.java
https://customsolvers.com/number_parser_java/
https://customsolvers.com/number_parser_java_es/
https://zenodo.org/record/1028916

• Numerous instantiating alternatives. Implicitly convertible between each other

and to related types.

//12.3*10^456 (double).
Number number = new Number(12.3, 456);

//123 (int).
NumberD numberD =
(
 new NumberD(123).lessThan(new NumberD(new Number(456))) ?
 //123 (int)
 new NumberD(123.456, NumericTypes.Integer) :
 //123.456 (double)
 new NumberD(123.456)
);

//Error (ErrorTypesNumber.InvalidOperation) provoked when dividing by zero.
NumberO numberO = NumberO.Division
(
 new NumberO
 (
 123.0, OtherTypes.IntegerTypes
)
 , new NumberO(0)
);

//1.234000000000e+308*10^5373 (double).
NumberP numberP = new NumberP("1234e5678");

Math2 Class

This class includes all the NumberParser mathematical functionalities.

Custom Functionalities

• RoundExact/TruncateExact can deal with multiple rounding/truncating

scenarios not supported by the native methods.

• GetPolynomialFit/ApplyPolynomialFit allow to deal with second degree

polynomial fits.

• Factorial calculates the factorial of any integer number up to 100000.

//123000 (double).
Number number = Math2.RoundExact
(
 new Number(123456.789), 3, RoundType.AlwaysToZero,
 RoundSeparator.BeforeDecimalSeparator
);

//30 (double).
NumberD numberD = Math2.ApplyPolynomialFit
(
 Math2.GetPolynomialFit
 (
 new NumberD[]
 {

 new NumberD(1), new NumberD(2), new NumberD(4)
 },
 new NumberD[]
 {
 new NumberD(10), new NumberD(20), new NumberD(40)
 }
)
 , new NumberD(3)
);

//3628800 (int).
NumberD numberD = Math2.Factorial(new NumberD(10));

Native Methods

Math2 also includes NumberD-adapted versions of a big number of Math and

.NET System.Math methods.

It also includes PowDecimal\SqrtDecimal which allow to unrestrictedly use NumberX

variables with Math.pow\Math.sqrt. Note that this Java version doesn't rely on the

original C# custom implementation (detailed explanations in varocarbas.com

Project 10) because of only making sense within the .NET conditions (i.e., high-

precision decimal type not natively supported by the in-built methods).

//1.582502898380e+14 (double).
Number number = Math2.PowDecimal
(
 new Number(123.45), 6.789101112131415161718
);

//4.8158362157911885 (double).
NumberD numberD = Math2.Log(new NumberD(123.45));

Further Code Samples

The test application includes a relevant number of descriptive code samples.

Authorship & Copyright

I, Alvaro Carballo Garcia (varocarbas), am the sole author of each single bit of this

code.

Equivalently to what happens with all my other online contributions, this code can

be considered public domain. For more information about my copyright/authorship

attribution ideas, visit the corresponding pages of my sites:

• https://customsolvers.com/copyright/

ES: https://customsolvers.com/copyright_es/

• http://varocarbas.com/copyright/

ES: http://varocarbas.com/copyright_es/

https://varocarbas.com/fractional_exponentiation/
https://varocarbas.com/fractional_exponentiation/
https://github.com/varocarbas/FlexibleParser_Java/blob/master/all_code/Test/src/Parts/NumberParser.java
https://customsolvers.com/copyright/
https://customsolvers.com/copyright_es/
http://varocarbas.com/copyright/
http://varocarbas.com/copyright_es/

	NumberParser (Java)
	Introduction
	Common Features
	Math2 Class
	Custom Functionalities
	Native Methods

	Further Code Samples
	Authorship & Copyright

